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Chapter 6

Orbital Mechanics

Maj Edward P. Chatters IV, USAF;  
Maj Bryan Eberhardt, USAF; and Maj Michael S. Warner, USAF

Knowledge of orbital motion is essential for a full understanding of space operations. 
Motion through space can be visualized using the laws described by Johannes Kepler 
and understood using the laws described by Sir Isaac Newton. Thus, the objectives of 
this chapter are to provide a conceptual understanding of orbital motion and discuss 
common terms describing that motion. The chapter is divided into three sections. The 
first part focuses on the important information regarding satellite orbit types to provide 
an understanding of the capabilities and limitations of the spaceborne assets support-
ing the war fighter. The second part covers a brief history of orbital mechanics, providing 
a detailed description of the Keplerian and Newtonian laws. The third section discusses 
the application of those laws to determining orbit motion, orbit geometry, and orbital 
elements. This section has many facts, figures, and equations that may seem over-
whelming at times. However, this information is essential to understanding the funda-
mental concepts of orbital mechanics and provides the necessary foundation to enable 
war fighters to better appreciate the challenges of operating in the space domain. 

Orbit Types

An orbit for a satellite is chosen based on the mission of that particular satellite. For 
instance, the lower the altitude of a satellite, the better the resolution an onboard 
camera can have and the shorter the time it takes to travel around the earth (period). 
On the other hand, the farther out a satellite is, the more of the earth’s surface it can 
observe at one time. Also, the farther the orbit is tilted away from the equator, the more 
of the earth’s surface a satellite will observe over the course of an orbit. These parameters 
(which will be described in more detail later in the chapter) drive the four basic orbit 
types: low Earth orbit (LEO), medium Earth orbit (MEO), geosynchronous Earth orbit 
(GEO), and highly elliptical orbit (HEO). Table 6-1 lists the various orbit types and the 
missions associated with each one.

Low Earth Orbit Satellites

LEO satellites orbit the earth at an altitude between approximately 100 and 1,000 
statute miles (160 to 1,600 km) by the laws of orbits corresponding to periods of about 
100 minutes to go around the earth. At these altitudes, onboard sensors have the best 
resolution, communication systems require the least power to talk to the earth, and 
rockets require the least energy to get them to orbit. LEO satellites can be divided into 
three general categories: polar sun-synchronous, polar non–sun-synchronous, and in-
clined nonpolar. 



90

ORBITAL MECHANICS

The term inclined nonpolar orbit refers to all LEO satellites that are not in near-polar 
orbits.1 The inclination of the orbit is equal to the maximum latitude the satellite will 
pass over. Thus, this type of orbit is used when global coverage of the earth is not 
needed. The chosen inclination is ordinarily the latitude of the launch site to maximize 
the amount of energy gained from the rotation of the earth. The International Space 
Station and space shuttle fall into this orbit category. Figure 6-1 shows an example of 
an inclined nonpolar orbiting satellite ground track. 

Table 6-1. Orbit types

Orbit Type Mission Altitude Period Tilta Shape

LEO
•  Polar sun-synchronous Remote sensing/ 

weather
~150–900 km ~98–104 

min
~98° circular

•  Inclined nonpolar International Space 
Station

~340 km ~91 min ~51.6° circular 

•  Polar non–sun-synchronous Earth observing,
scientific

~450–600 km ~90–101 
min

~80–94° circular 

MEO
•  Semisynchronous Navigation,

communications,
space environment

~20,100 km ~12 hours ~55° circular

GEO
•  Geosynchronous 

•  Geostationary

Communication, 
early warning,
nuclear detection, 
weather

~35,786 km ~24 hours 
(23h 56m
 04s)

~0° circular

HEO
•  Molniya Communications Varies from 

~495 km to 
~39,587 km

~12 hours
(11h 58m)

63.4° long 
ellipse

——————
a Orbits roughly stay in the same plane. This indicates the tilt or inclination of this plane relative to the equator. Near zero is along the equator, 
and near 90° is over the poles. Greater than 90° indicates against the rotation of the earth.

Figure 6-1. Inclined nonpolar orbit. (Created by Air Command and Staff College [ACSC]) 
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A polar non–sun-synchronous orbit is like the previous orbit except that the inclina-
tion is nearly polar. This type of orbit is used to maximize the coverage of the earth—every 
latitude will ultimately be passed over, and because of the fast period, a large part of the 
earth’s surface will be seen each day. All the earth’s surface will ultimately be overflown. 
This type of orbit is commonly used for constellations of communication satellites.

One phenomenon affecting a polar, non–sun-synchronous orbit is that, because the 
earth is not a perfect sphere, the orbit will drift (or precess) over time. If the designers want 
the orbit to pass over a specific point on the earth at a specific time each day, a polar sun-
synchronous orbit is needed. In this type of orbit, a specific altitude and inclination are 
picked such that the natural orbit precision exactly matches the rate that the earth orbits 
the sun [(360° per year)/(365.25 days per year) = .986° per day].2 An example of a polar 
sun-synchronous satellite orbit and corresponding ground track is shown in figure 6-2.

Medium Earth Orbit Satellites

MEO satellites orbit the earth at an altitude be-
tween approximately 1,000 and 12,000 statute miles 
(1,600 to 19,300 km), corresponding to periods be-
tween 100 minutes and 12 hours. Medium Earth or-
bits are used to provide longer dwell times over a 
given region and a larger coverage area of the earth 
as compared to LEO satellites. In addition, the higher 
altitude above the earth reduces the effects of atmo-
spheric drag to effectively zero. MEO satellite mis-
sions include navigation systems such as GPS.3 

An example of an MEO satellite, a semisynchro-
nous satellite ground track, can be seen in figure 6-3. 
This orbit, with an orbital period (the time it takes to 
make one complete orbit around the earth) of ap-
proximately 12 hours, repeats twice a day. Since the 
earth turns halfway on its axis during each com-
plete orbit, the points where the sinusoidal ground 
tracks cross the equator coincide pass after pass, 
and the ground tracks repeat each day as shown. 
This predictability is very helpful for ground sta-
tions monitoring the satellite.

Geosynchronous Earth Orbit Satellites

GEO satellites orbit the earth at an altitude of 
22,236 statute miles (35,786 km). At this altitude, a 
satellite in a circular orbit and zero inclination will 
have an orbital period equal to the earth’s rotational 
period (approximately 24 hours). This allows a sat-
ellite to remain relatively fixed over a particular 
point on the earth’s surface. At an altitude of 22,236 
miles, one geosynchronous satellite has a command-
ing field of view of almost one-third of the earth’s 
surface from approximately 75° south latitude to 

Figure 6-2. Sun-synchronous orbit. 
(Adapted from Air  University,  Space 
Primer, unpublished book, 2003, 8-18.)

Figure 6-3. Semisynchronous orbit. 
(Adapted from Air  University,  Space 
Primer, unpublished book, 2003, 8-18.)
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approximately 75° north latitude.4 Therefore, geosynchronous orbits are desirable for 
communications and early warning systems. However, this altitude and inclination are 
the most difficult to achieve, especially for nations without an equatorial launch site.

The terms geosynchronous and geostationary have been used interchangeably, but 
there is a distinct difference between the two. Geosynchronous refers to a satellite with 
a 24-hour period, regardless of inclination. Geostationary refers to a satellite with a 
24-hour period, in a near-circular orbit, with an inclination of approximately zero. It 
appears to hover over a spot on the equator as shown in figure 6-4. All geostationary 
orbits must be geosynchronous, but not all geosynchronous orbits are necessarily geo-
stationary.5 An example of a nongeostationary satellite would be the Syncom 2, launched 
in 1963 into a geosynchronous orbit with a 33° inclination.6 

Now take the same orbit and give it 
an inclination of 30°. The period and or-
bit shape remain the same. The ground 
trace will retrace itself with every orbit, 
in this case in a figure-eight pattern. 
The ground trace will also vary between 
30° north and 30° south latitude due to 
its 30° inclination. In another example, 
if the geostationary satellite has an ec-
centricity near zero and an inclination 
of 60°, the ground trace would follow a 
similar, larger figure-eight path between 
60° north and 60° south latitude as 
shown in figure 6-5.

Highly Elliptical Orbit Satellites

All the orbits discussed thus far have 
been circular. However, orbits can also 
take on an elliptical shape. HEO satellites 
are the most common noncircular orbits, 
and they orbit the earth at altitudes which 
vary between approximately 660 and 
24,000 statute miles (1,060 and 38,624 
km) in a single period.7 Satellites travel 
faster the closer they are to the earth, so 
HEO orbits enable long dwell times as well 
as large fields of view when at their far-
thest points from the earth (apogee). They 
are primarily used for communications, 
scientific research, and intelligence, sur-
veillance, and reconnaissance (ISR) mis-
sions when GEO orbits are inaccessible. 

The most popular highly elliptical orbit is the “Molniya” orbit, named after the Rus-
sian word for lightning to describe the speed at which a satellite in this particular 
orbit travels through its closest point of approach (perigee).8 Figure 6-6 shows a 
typical Molniya orbit that might be used for northern hemispheric communications. 

Figure 6-4. Geostationary orbit/ground track. 
(Adapted from Air University, Space Primer, un-
published book, 2003, 8-17.)

Figure 6-5. Ground traces of inclined, circular, syn-
chronous satellites. (Adapted from Air  University, 
Space Primer, unpublished book, 2003, 8-17.)
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With an orbital period of 12 hours, the ground track 
retraces itself every day, just like the medium Earth, 
semisynchronous orbit of GPS.

A History of the Laws of Motion

The modern orbit types have been developed 
based on theories dating back centuries. The early 
Greeks initiated the orbital theories, postulating that 
the earth was fixed, with the planets and other ce-
lestial bodies moving around it—a geocentric uni-
verse.9 About 300 BC, Aristarchus of Samos sug-
gested that the sun was fixed and the planets, 
including Earth, were in circular orbits around the 
sun—a heliocentric universe.10 Although Aristarchus 

was more correct (at least about a heliocentric solar system), his ideas were too revo-
lutionary for the time. Other prominent astronomers/philosophers were held in higher 
esteem, and since they favored the geocentric theory, Aristarchus’s heliocentric theory 
was rejected, and the geocentric theory continued to be predominately accepted for 
many centuries.

In the year 1543, some 1,800 years after Aristarchus proposed a heliocentric sys-
tem, a Polish monk named Nicolas Koppernias (better known by his Latin name, Co-
pernicus) revived the heliocentric theory when he published De Revolutionibus Orbium 
Coelestium (On the Revolutions of the Celestial Spheres). This work represented an ad-
vance, but there were still some inaccuracies. For example, Copernicus thought that 
the orbital paths of all planets were circles around the center of the sun.11 

Tycho Brahe established an astronomical observatory on the island of Hven in 
1576. For 20 years, he and his assistants carried out the most complete and accurate 
astronomical observations of the period. However, Brahe did not accept Copernicus’s 
heliocentric theory and instead believed in a geo-heliocentric model that had the 
moon and sun revolving around the earth while the rest of the celestial bodies re-
volved around the sun.12

German astronomer Johannes Kepler, born in 1571, wondered why there were only 
six planets and what determined their separation. His theories required data from ob-
servations of the planets, and he realized that the best way to acquire such data was 
to become Brahe’s assistant. 

In 1600, Brahe set Kepler to work on the motion of Mars. This task was particularly 
difficult because Mars’s orbit was the second most eccentric (of the then-known plan-
ets) and defied the circular explanation. After Brahe’s death in 1601, Kepler finally 
discovered that Mars’s orbit (and that of all planets) was represented by an ellipse with 
the sun at one of its foci.13 

Kepler’s Laws of Planetary Motion

Kepler’s discovery of Mars’s elliptical orbit led to another discovery—the first of his 
three laws of planetary motion, which describe the orbit of the planets around the sun.

Figure 6-6. Molniya orbit. (Adapted 
from Air University, Space Primer, un-
published book, 2003, 8-18.)
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Kepler’s First Law (Law of Ellipses). The orbits of the planets are ellipses with the 
sun at one focus.14 Figure 6-7 shows an ellipse where O1 is one focus and O is the other. 
This depiction illustrates that, by definition, an ellipse is a closed curve such that the 
sum of the distances (R1 and R2) from any point (P) on the curve to the two foci (O1 and 
O) remains constant.15 

The maximum diameter of an ellipse is called its major axis; the minimum diameter is 
the minor axis. The size of an ellipse depends in part upon the length of its major axis. The 
shape of an ellipse is denoted by eccentricity (e), which is the ratio of the distance between 
the foci to the length of the major axis (see the orbit geometry section in this chapter).

The paths of ballistic missiles (not including the 
powered and reentry portion) are also ellipses; how-
ever, they happen to intersect the earth’s surface (as 
shown in fig. 6-8).

Kepler’s Second Law (Law of Equal Areas). The 
line joining the planet to the sun sweeps out equal 
areas in equal times.16 Based on his observation, Ke-
pler reasoned that a planet’s speed depended on its 
distance from the sun. 

Kepler’s second law is easy to visualize in figure 
6-9, where t0, t1, and so forth indicate time. If the 
object in figure 6-9 were in a circular orbit (versus 
the elliptical orbit shown), its speed and radius 
would both remain constant, and therefore, over a 
given interval of time the “shape” of area 1 and area 
2 would be identical. It is also apparent from figure 
6-9 that the closer a planet is to the sun along the 
elliptical orbit, the faster it travels. The same prin-
ciple applies to satellites orbiting the earth, as espe-
cially noted in the Molniya orbit discussed earlier. 

Kepler’s Third Law (Law of Harmonics). The 
square of the orbital period of a planet is proportional 
to the cube of the mean distance from the sun.17 Ke-
pler’s third law directly relates the square of the pe-
riod to the cube of the mean distance for orbiting 

Figure 6-7. Kepler’s first law. (Created by ACSC)

Figure 6-8. Ballistic missile path. 
(Adapted from Air  University, Space 
Primer, unpublished book, 2003, 8-5.)

Figure 6-9. Kepler’s second law. 
(Adapted from Air  University, Space 
Primer, unpublished book, 2003, 8-6.)
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objects. By this law, the altitude of a circular orbit uniquely determines how long it will 
take to travel around the earth and vice versa.18 Thus, geostationary orbits, which must 
have a period of 24 hours, must be at an altitude of 24,000 miles. LEO satellites likewise 
cannot hover over a spot on the earth.

Newton’s Laws of Motion 

The laws Kepler developed describe very well the observed motions of the planets, 
but they made no attempt to describe the forces behind those laws. The laws regarding 
those forces would be key to ultimately developing artificial satellites. This work was 
formulated by Sir Isaac Newton.

In 1665, an outbreak of the plague forced the University of Cambridge to close for 
two years. During those two years, the 23-year-old genius Isaac Newton conceived the 
law of gravitation, the laws of motion, and the fundamental concepts of differential 
calculus. Twenty years later the result appeared in The Mathematical Principles of Nat-
ural Philosophy, or simply the Principia,19 which formulated a grand view that was 
consistent and capable of describing and unifying the mundane motion of a falling 
apple and the motion of the planets.

Newton’s First Law (Inertia). Every body continues in a state of rest, or of uniform 
motion in a straight line, unless it is compelled to change that state by a force imposed 
upon it.20 Newton’s first law describes undisturbed motion. Inertia is the resistance of 
mass to changes in its motion.

Newton’s Second Law (Changing Momentum). When a force is applied to a body, 
the time rate of change of momentum is proportional to, and in the direction of, the ap-
plied force. Newton’s second law describes how motion changes. It is important to de-
fine momentum before describing the second law. Momentum is a measure of an ob-
ject’s motion. Momentum (p) is a vector quantity (denoted by boldface type) defined as 
the product of an object’s mass (m) and its relative velocity (v). 

If there is a change in momentum (∆p), assuming the mass of the object remains the 
same, then there must be a change in velocity (∆v) of the object as well. As a result, we 
have the following equation: 

Force (F) is defined as the time rate of change of an object’s momentum. 

p = mv

∆p = m ∆v
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Acceleration (a) is defined as the change in velocity over time (∆v/∆t). As a result, this sec-
ond law becomes Newton’s famous equation:

Newton’s Third Law (Action-Reaction). For every action there is a reaction that is 
equal in magnitude but opposite in direction to the action.21 This law hints at conservation 
of momentum. If forces are always balanced, then the objects experiencing the opposed 
forces will change their momentum in opposite directions and equal amounts.

Newton’s Law of Universal Gravitation. Every particle in the universe attracts ev-
ery other particle with a force that is proportional to the product of the masses and in-
versely proportional to the square of the distance between the particles.22

In the above equation, F
g
 is the force due to gravity, G is the universal gravitational 

constant with a set value of 6.67259 x 10-11 m3kg-1s-2, M1 and m2 are the masses of the 
central body (the earth, for example) and orbiting bodies, and R is the distance between 
the centers of the two bodies.23 This law, in association with the second law, allows sci-
entists and engineers to connect the forces applied (such as gravity) to the acceleration. 
When the position and velocity are known, the gravity force can be calculated. Knowing 
the gravity acceleration will change the position and velocity. Plotting the altitude over 
time for a satellite yields an orbit.

In this way, engineers can also calculate the necessary orbit velocities and the sub-
sequent amounts of force necessary to launch a satellite into space.24 The force (F) re-
quired will determine the type of booster (Delta IV, Delta II, space shuttle, etc.) that is 
selected to launch the satellite. 

Once the satellite is at the right spot (position) going a certain speed (velocity), the 
orbit will be established and predictable using the laws above. The solutions to the 
equations above also match Kepler’s observations of the planets, thus establishing that 
satellites would move the same way. However, with additional velocity, satellites do not 
have to travel only in ellipses; they can also travel on parabolas or hyperbolas. This 
knowledge is key to understanding interplanetary travel.

Orbital Motion

So what is the velocity and position a body needs to get into orbit? According to 
Newton’s second law, for a body to change its motion a force must be imposed upon 
it. An example is playing catch—when a ball is thrown or caught, its motion is al-
tered. Thus, gravity is compensated for by throwing the ball upward by some angle 
allowing gravity to pull it down, resulting in an arc. When the ball leaves the hand, it 
starts accelerating toward the ground according to Newton’s laws (at sea level on the 

F = m a
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earth the acceleration is approximately 9.8 meters per second [m/s] or 32 feet [ft.] per 
second straight down).25 If the ball is initially motionless, it will fall straight down. 
However, if the ball has some horizontal motion, it will continue in that motion while 
accelerating toward the ground. Figure 6-10 shows a ball released with varying lateral 
(or horizontal) velocities.

In figure 6-10, if the initial height of 
the ball is approximately 4.9 meters 
(16.1 ft.) above the ground, then at sea 
level, it would take one second for the 
ball to hit the ground. How far the ball 
travels along the ground in that one sec-
ond depends on its horizontal velocity 
(table 6-2).

Eventually one would come to the 
point where the earth’s surface drops 
away as fast as the ball drops toward it. 
As figure 6-11 depicts, the earth’s sur-
face curves down about five meters for 
every eight kilometers.26 

At the earth’s surface (without accounting for the atmosphere, mountains, or other 
structures), a satellite would have to travel at approximately 8 km/second (km/sec) (or 
about 17,900 mph) to fall around the earth without hitting the surface. In other words, 
the satellite would have to travel 17,900 mph to remain in orbit at the earth’s surface 
(at a height of approximately zero). This is fundamentally what it means to be in or-
bit—travelling fast enough forward that by the time the orbiting body would ordinarily 
hit the ground, the earth will have curved away from the body.

However, the earth does have an atmo-
sphere, and to stay in a relatively stable 
orbit, a satellite has to be positioned at an 
orbital height above the denser parts of 
the earth’s atmosphere. The minimum 
height is approximately 150 km (about 93 
miles) above the earth’s surface. To re-
main in orbit at this height, a satellite 
must travel at 7.8 km/sec (or 17,500 
mph).27 At this speed, the orbital period of 

Figure 6-10. Newton’s second law. (Adapted from 
Air  University, Space Primer, unpublished  book, 
2003, 8-9.)

Table 6-2. Gravitational effects.

Horizontal velocity (m/s)a Distance travelled in one second (m)

Vertical Horizontal
1
2
4
8
16

4.9
4.9
4.9
4.9
4.9

1
2
4
8
16

————–
a All values are in meters and meters per second.

Figure 6-11. Earth’s curvature. (Adapted from Air Uni-
versity, Space Primer, unpublished book, 2003, 8-10.)
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the satellite would be 87.5 minutes. A period of less than 87.5 minutes indicates that 
the object is “decaying” due to the effects of atmospheric drag and will eventually reen-
ter the earth’s atmosphere and fall back to Earth. This would ordinarily cause the ob-
ject to burn up. Thus, the job of a rocket is to carry a satellite above the main part of 
the atmosphere and then get it travelling at the right speed. Once the satellite is re-
leased, it is in orbit.

At higher altitudes, the speed needed to maintain an orbit is less, much like the 
speed needed to keep a ball on the end of a string horizontal. Figure 6-12 shows how 
differing velocities affect a satellite’s trajectory or orbital path. The figure depicts a sat-
ellite at an altitude of one Earth radius (6,378 km above the earth’s surface). At this 
distance, a satellite would have to travel at 5.59 km/sec (12,500 mph) to maintain a 
circular orbit, and this speed is known as the satellite’s circular velocity for this alti-
tude. As the satellite’s speed increases, it moves away from the earth, and its trajectory 
becomes an elongating ellipse until the speed reaches 7.91 km/sec (17,700 mph). At 
this speed and altitude the satellite has enough energy to leave the earth’s gravity and 
never return. Its trajectory has now become a parabola, and this velocity is known as 
its escape velocity for this altitude.28 The equations for circular velocity (v

c
) and escape 

velocity (v
e
) are as follows:

In these equations, G is the gravitational constant (6.67259 x 10-11 m3kg-1s-2), M
E
 is the 

mass of the earth (approximately 5.977 x 1024 kilograms [kg]), and r is the distance of the 
satellite from the center of the earth (i.e., the altitude plus 6,378 km). 

 As an example, from a low Earth orbit of 161 km (100 miles), the escape velocity 
becomes 11.2 km/sec (25,050 mph). In figure 6-12, the two specific velocities (5.59 
km/sec and 7.91 km/sec) correspond to the circular and escape velocities for the spe-
cific altitude of one Earth radius (6,378 km).

Figure 6-12. Velocity versus trajectory. (Adapted from Air University, Space Primer, unpublished book, 
2003, 8-10.)
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Constants of Orbital Motion: Momentum and Energy

For a satellite, if you know the position and velocity when the satellite is released 
from the rocket, you can use Newton’s laws to plot out the long-term trajectory. How-
ever, to compare orbits, it is helpful to have some common parameters to describe them 
(like altitude and eccentricity, as described above). This section explores how to find 
some of those constants to help visualize an orbit.

For a system such as a satellite affected only by gravity (i.e., no drag or thrust), some 
basic properties remain constant or fixed; that is, they are conserved. Energy and mo-
mentum are two such properties which are conservative in such a closed system.

Momentum. Linear momentum is the product of mass times velocity, as discussed pre-
viously in Newton’s second law. For rotating or spinning bodies, such as a satellite orbiting 
the earth, a second form of this law is formulated to describe motion in angular terms. 
Angular momentum ( H ) is the product of the linear momentum of an object (i.e., satellite) 
times the object’s position from the center of rotation (the center of the earth): H = m(r × v).29 
This property remains constant for orbiting objects which are not torqued.

In an elliptical orbit, the radius (R) is constantly varying. Thus, for angular momen-
tum to be conserved, the orbital speed must change. Hence, there is greater velocity at 
perigee than at apogee. Also, since the direction of the angular momentum is also con-
served, the plane formed by the rotating object is fixed. Thus, unless an orbit is torque, 
the orbit plane will not drift through space.

Energy. A system’s mechanical energy can also be conserved. Total mechanical en-
ergy (E) is derived from an object’s position and motion and is usually depicted as the 
sum of kinetic energy (KE) and gravitational potential energy (PE):30 

Kinetic energy is the energy associated with an object’s motion, and gravitational 
potential energy is the energy associated with an object’s position. Potential energy is 
measured relative to the center of the earth (hence, it is not the “mgh” you may have 
learned in high school). Potential energy is the mass of an object (m

1
) times the earth’s 

gravitational acceleration (M
2
G) over the height above the earth’s center. Kinetic energy 

(KE) is expressed as one-half an object’s mass times the square of the object’s veloc-
ity.31 These equations are expressed as follows:

The Law of Conservation of Energy in its simplest form states that, under the prem-
ise that energy cannot be created or destroyed, the sum of all energies (in this case 
total mechanical energy [E]) in a particular system remains constant unless energy is 
added (such as by thrust) or taken away (such as by drag).32 Therefore, any increase in 
kinetic energy will result in a proportional decrease in gravitational potential energy 
since the value of total mechanical energy (E) will not change. 

E = KE + PE
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Hence, in a circular orbit where the radius remains constant, so will the velocity, as 
both gravitational potential and kinetic energy remain constant. In all other orbits (el-
liptical, parabolic, and hyperbolic), the “radius” and speed both change, and therefore, 
so do both the gravitational potential and kinetic energies in such a way that the total 
mechanical energy of the system remains constant. Again, for an elliptical orbit, this 
results in greater velocity at perigee than apogee. 

Orbit Geometry

When Newton’s second law is combined with his gravitational law, the solutions are 
all conic sections, which are shapes that can be made by slicing off sections of a cone 
at various angles. The conic section an object will follow depends on its kinetic and 
potential energy as described above. Conic sections consist of four types: circular, el-
liptical, parabolic, and hyperbolic. If an object lacks the velocity (insufficient kinetic 
energy, KE < PE) to overcome the earth’s gravitational attraction, then it will follow a 
closed-path orbit in the form of a circle or ellipse. However, if the object has enough 
velocity (kinetic energy equal in magnitude to the gravitational potential energy in the 
absence of friction resistance, KE = PE) to overcome the earth’s gravitational attraction, 
then the object will follow an open path in the shape of a parabolic orbit. Finally, if the 
object has excess velocity (more than sufficient kinetic energy, KE > PE) to overcome 
the earth’s gravitational attraction, then the object will follow an open path in the 
shape of a hyperbolic orbit.33 Figure 6-13 shows a three-dimensional representation of 
the various possible conic sections (orbit geometries).

Figure 6-14 shows a two-dimensional representation of the conic section geometry. 
The parameters that describe the size and shape of the conic are its semimajor axis (a) 
and eccentricity (e). The semimajor axis, a measure of the orbit’s size, is half the dis-
tance between perigee and apogee; it is also the average distance from the attracting 
body’s center. Eccentricity, which describes the orbit’s shape, is the ratio of the linear 

eccentricity (c) to the semimajor axis. The linear ec-
centricity is half the distance between the two foci.

These parameters apply to all trajectories. A circu-
lar orbit is a special case of the elliptical orbit where 
the foci coincide (c = 0). Figure 6-15 depicts a satellite 
orbit with additional parameters whose conic section 
is an ellipse.

Coordinate Reference Systems and Orbital 
Elements

All positions and velocities have to be measured 
with respect to a fixed frame of reference. Many such 
frames exist—which is used depends on the situation 
and the nature of the knowledge to be retrieved. Table 
6-3 lists several common coordinate reference sys-
tems that are used for space applications.34 For de-
scribing the orbit itself, the Earth-centered inertial 
(ECI) system is used, while the other two describe 
how the satellite is oriented within that frame.

Figure 6-13. Conic sections. 
(Reprinted from David  P.  Stern, 
“Kepler’s  Three  Laws  of  Plane-
tary Motion: An Overview for Sci-
ence Teachers,” http://www.phy6.
org/stargaze/Kep3laws.htm  [ac-
cessed 18 April 2008].) 
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In three-dimensional space, the position and velocity each have three components in 
each dimension. Therefore, any element set defining a satellite’s orbital motion con-
tains at least six parameters to fully describe that motion. The Keplerian, or classical, 
element set is useful for space operations and tells us four attributes of orbits: orbit 
size, orbit shape, orientation (to include orbital plane in space and orbit within plane), 
and location of the satellite at any point in time during its orbit. The most popular Ke-
plerian element set format is the two-line element (TLE) set, which will be discussed 
later in this chapter.

Orbit Size. The orbit size is described by the semimajor axis (a)—half the distance 
between apogee and perigee on the ellipse. 

Orbit Shape. Eccentricity (e) measures the shape of an orbit. Recall from the dis-
cussion of orbit geometry above that eccentricity is a ratio of the foci separation (linear 
eccentricity [c]) to the size (semimajor axis [a]) of the orbit.

Figure 6-14. Conic section geometry. 
(Adapted from Air  University, Space 
Primer, unpublished book, 2003, 8-11.)

Figure 6-15. Elliptical geometry. (Adapted from Air 
University, Space Primer, unpublished  book,  2003, 
8-11.)

Coordinate 
Name

Fixed with 
Respect to

Center Z-axis or Pole X-axis or 
Reference 
Direction

Applications

Earth-centered 
inertial (ECI)

Inertial space Earth Celestial pole Vernal equinox 
(J2000.0 
reference frame)

Orbit analysis, 
astronomy, 
inertial motion

Spacecraft-
fixed

Spacecraft Defined by 
engineering 
drawings

Spacecraft 
axis toward 
nadir

Spacecraft axis 
in direction of 
velocity vector

Position and 
orientation 
of spacecraft 
instruments

Roll, pitch, 
yaw

Orbit Spacecraft Nadir Perpendicular 
to nadir toward 
velocity vector

Earth observation 
attitude 
maneuvers

————
Adapted from Wiley J. Larson and James R. Wertz, ed., Spacecraft Mission Analysis and Design, 3rd ed. (El Segundo, CA: Microcosm Press, 
1999), 96.

Table 6-3. Coordinate reference systems.

e = c/a
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Size and shape relate to orbit geometry and tell what the orbit looks like. The other 
orbital elements deal with orientation of the orbit relative to a fixed point in space. With 
energy being conserved, both e and a are constant.

Orientation. The first angle used to orient the orbital plane is inclination (i)—a mea-
surement of the orbital plane’s tilt relative to the equatorial plane. It is measured coun-
terclockwise at the point at which an object crosses the equatorial plane traveling north 
in its orbit (the ascending node) while looking toward Earth as shown in figure 6-16.35

Inclination is utilized to define several 
general classes of orbits as shown in fig-
ure 6-17. Orbits with inclinations equal 
to 0° or 180° are equatorial orbits, be-
cause the orbital plane is contained 
within the equatorial plane. If an orbit 
has an inclination of 90°, it is a polar 
orbit, because it travels over the poles. If 
0°≤i<90°, the satellite orbits in the same 
direction as the earth’s rotation (orbit-
ing eastward around the earth) and is 
called a prograde orbit. If 90°<i≤180°, 
the satellite orbits in the opposite direc-
tion of the earth’s rotation (orbiting 
westward about the earth) and is in a 
retrograde orbit. 

The second measure used to orient 
the orbital plane is the right ascension 
of the ascending node (Ω—uppercase 
Greek letter omega). It measures where 
the ascending node is relative to a ref-
erence line within the ECI coordinate 
system eastward to the ascending node 
(0°≤ Ω≤ 360°) as shown in figure 6-18.36 
It is mostly used to space out constella-
tions of similar satellites.

The reference line is established by 
drawing a line from the center of the 
sun through the center of the earth and 
extending out into space as the earth 
crosses the sun’s equatorial (ecliptic) 
plane.37 These crossings occur twice a 

year and are called the vernal or autumnal equinox (the first day of spring or fall). For 
astronomical purposes we use the spring or vernal equinox to establish our reference 
point. When first established as the reference point, this line pointed to the constella-
tion Aries, hence the name “first point of Aries” (fig. 6-19).38 

Argument of Perigee. Inclination and right ascension fix the orbital plane in space. 
The orbit must also be fixed within the orbital plane. For elliptical orbits, the perigee is 
the reference point in the orbit. The argument of perigee (ω — lowercase Greek letter 
omega) is used, and it is the angle within the orbital plane from the ascending node to 
perigee in the direction of satellite motion (0°≤ω≤360°) (fig. 6-20).39 

Figure 6-16. Inclination tilt. (Adapted from Air Univer- 
sity, Space Primer, unpublished book, 2003, 8-13.)

Figure 6-17. Orbital inclination types. (Created 
by ACSC)
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True Anomaly. At this point all 
the orbital parameters needed to vi-
sualize the orbit in space have been 
specified. In fact, due to conserva-
tion of momentum and energy, the 
parameters are all constant unless 
the orbit is perturbed. The final 
step is to locate the satellite within 
its orbit. True anomaly (ν — lowercase 
Greek letter nu) is an angular mea-
surement that describes where the 
satellite is in its orbit at a specified 
time. It is measured within the or-
bital plane from perigee to the sat-
ellite’s position in the direction of 
motion (0°≤ν≤360°).40

True anomaly locates the satellite 
with respect to time and is the only 
orbital element that changes with 
time.41 The true anomaly cannot be 
defined in cases where the eccen-
tricity is exactly zero (perfectly cir-
cular orbit) since there would be no 
perigee from which to measure. 
Likewise, the argument of perigee is 
undefined for a circular orbit 
(which has no perigee), and the 
right ascension of the ascending 
node is undefined for an equato-
rial orbit (which never crosses the 
equator).

Figure 6-18. Right ascension of the ascending node.  (Adapted from Air University, Space Primer, unpub-
lished book, 2003, 8-11.)

Figure 6-19. Vernal equinox. (Adapted from Air University, 
Space Primer, unpublished book, 2003, 8-14.)

Figure 6-20. Argument of perigee. (Adapted from Air Uni-
versity, Space Primer, unpublished book, 2003, 8-13.)
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Table 6-4 summarizes the Keplerian orbital element set and orbit geometry and its 
relationship to the earth.42

Table 6-4. Classical orbital elements.

Element Name Description Definition Remarks

a semimajor axis orbit size half the long axis of the 
ellipse

orbital period and energy 
depend on orbit size

e eccentricity orbit shape ratio of half the foci 
separation (c) to the 
semimajor axis (a)

closed orbits:

 0 ≤ e < 1

open orbits: e ≥ 1

i inclination orbital plane’s 
tilt

angle between the orbital 
plane and equatorial 
plane, measured 
counterclockwise at the 
ascending node

equatorial: i = 0° or 180°
prograde: 0° ≤ i < 90°
polar: i = 90°
retrograde: 90° < i ≤ 180°

Ω right ascension 
of the 
ascending 
node

orbital plane’s 
rotation about 
the earth

angle, measured 
eastward, from the vernal 
equinox to the ascending 
node

0° ≤ Ω < 360°

undefined when i = 0° or 180°

(equatorial orbit)

ω argument of 
perigee

orbit’s 
orientation 
in the orbital 
plane

angle, measured in the 
direction of satellite 
motion, from the 
ascending node to perigee

0° ≤ ω < 360°
undefined when i = 0° or 

180°, or e = 0 (circular orbit)

ν true anomaly satellite’s 
location in its 
orbit

angle, measured in the 
direction of satellite 
motion, from perigee to 
the satellite’s location

0° ≤ ν < 360°
undefined when e = 0 
(circular orbit)

Two-Line Element Sets

 The way the orbital elements are usually presented to space personnel is through 
the TLE set. It is used by agencies such as NASA and USSTRATCOM to describe the 
location of satellites orbiting the earth. The two-line element set actually has three 
lines. The first line is reserved for the satellite’s name.43 The next two lines in essence 
describe the “address” of the satellite (fig. 6-21). The components of the two-line ele-
ment set are defined by NASA as follows:44 

Name of Satellite (NOAA 6). This is simply the name associated with the satellite. 
NOAA 6 is a weather satellite operated by the National Oceanic and Atmospheric Ad-
ministration. 

International Designator (84 123A). The 84 indicates that the launch year was 
1984. The 123 indicates that this launch was the 123rd of the year and A shows it was 
the first object resulting from this launch. 
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Epoch Date and Julian Date Fraction (86 50.28438588). The Julian date frac-
tion is just the number of days passed in the particular year. For example, the date 
above shows 86 as the epoch year (1986), and the Julian date fraction of 50.28438588 
means a little over 50 days after 1 January 1986. The resulting time of the vector would 
be 1986/050:06:49:30.94, computed as follows:

Start with 50.28438588 days (days = 50)

50.28438588 days - 50 = 0.28438588 days

0.28438588 days x 24 hours/day = 6.8253 hours (hours = 6)

6.8253 hours - 6 = 0.8253 hours

0.8253 hours x 60 minutes/hour = 49.5157 minutes (minutes = 49)

49.5157 - 49 = 0.5157 minutes

0.5157 minutes x 60 seconds/minute = 30.94 seconds (seconds = 30.94) 

Ballistic Coefficient (0.00000140). Also called the first derivative of mean mo-
tion, the ballistic coefficient is the daily rate of change in the number of revolutions 
(revs) the object completes each day, divided by two. Units are revs/day. This is a 
“catch all” term used in the Simplified General Perturbations (SGP4) USSTRATCOM 
predictor to represent the atmospheric drag slowing down a satellite. Mean motion is 
the average angular rate of a satellite, reflecting that any satellite with a distinct apogee 
and perigee would change speeds over the course of an orbit. For a circular orbit, the 
ballistic coefficient would be a constant. 

Second Derivative of Mean Motion (00000-0 = 0.00000). The second derivative 
of mean motion is a second-order drag term in the SGP4 predictor used to model ter-
minal orbit decay. It measures the second time derivative in daily mean motion, divided 
by six. Units are revs/day^3. A leading decimal must be applied to this value. The last 
two characters define an applicable power of 10 (12345-5 = 0.0000012345). 

Drag Term (67960-4 = 0.000067960). Also called the radiation pressure coeffi-
cient (or BSTAR), the parameter is another drag term in the SGP4 predictor. Units are 
Earth radii^-1. The last two characters define an applicable power of 10. Do not con-
fuse this parameter with “B-Term,” the USSTRATCOM special perturbations factor of 
drag coefficient, multiplied by reference area, divided by weight. 

Figure 6-21. TLE set format. (Reprinted from NASA, “Definition of Two-Line Element Set Coordinate System,” 
Human  Space  Flight  Web  site,  http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/
SSOP_Help/tle_def.html [accessed 18 April 2008]).
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Element Set Number and Check Sum (5293). The element set number is a running 
count of all TLE sets generated by USSTRATCOM for this object (in this example, 529). 
Since multiple agencies perform this function, numbers are skipped on occasion to avoid 
ambiguities. The counter should always increase with time until it exceeds 999, when it 
reverts to one. The last number of the line is the check sum of line one. A check sum (or 
checksum) is simply a value used in computer programming to verify the validity of the 
information contained within that particular line of information or line of computer code. 
It is used to check whether errors occurred during the transmission or storage of data.45

Satellite Number (11416U). This is the catalog number that USSTRATCOM has 
designated for this object. A U indicates an unclassified object. 

Inclination (98.5105). The angle, in degrees, is the mean inclination. 
Right Ascension of the Ascending Node (69.3305). The angle, in degrees, is the 

mean right ascension of the ascending node. 
Eccentricity (0012788). The value is the mean eccentricity over the orbit. A lead-

ing decimal must be applied to this value.
Argument of Perigee (63.2828). This value is the mean argument of perigee 

over the orbit. 
Mean Anomaly (296.9658). The mean anomaly is the angle, in degrees, measured 

from perigee of the satellite location in the orbit referenced to a circular orbit with the 
radius equal to the semimajor axis. 

Mean Motion (14.24899292). The value is the mean number of orbits per day the 
object completes. There are eight digits after the decimal, leaving no trailing space(s) 
when the following element exceeds 9999. The period of the satellite’s orbit can be de-
termined by taking the total number of minutes in a sidereal day (1,436 minutes) and 
dividing it by the mean motion. For this particular satellite, the period would be 1,436 
÷ 14.24899292 = 101.06 minutes.

Revolution Number and Check Sum (346978). This is the orbit number at epoch 
time. This time is chosen very near the time of true ascending node passage as a mat-
ter of routine. At the time of this element set, the NOAA 6 had completed 34,697 revo-
lutions around the earth. The last digit is the check sum for line two. 

Ground Tracks

The orbit parameters determine which points on 
the earth a satellite flies over and when. The fly-over 
points will be key for controlling or communicating 
with satellites from fixed ground stations and also 
knowing where on the earth a satellite sensor can 
see. To determine the fly-over points, a line is drawn 
between the earth’s center and the satellite. The point 
on the line at the surface of the earth is called the 
satellite subpoint, or nadir.46 The path the satellite 
subpoint traces on the earth’s surface over time is 
referred to as the satellite ground track, or ground 
trace, as shown in figure 6-22. 

Since the earth is rotating under the satellite, the 
intersection of the orbital plane and the earth’s sur-
face is continually changing. Because of this relative 

Figure 6-22. Ground track. (Adapted 
from Air  University,  Space Primer, 
unpublished book, 2003, 8-16.)
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motion, ground tracks come in various forms and shapes based on the orbit parame-
ters discussed above. 

Inclination. Inclination defines the tilt of the orbital plane and therefore defines the 
maximum latitude, both north and south of the ground track. A satellite with a 50° 
inclination will have a ground track that moved between 50° north and 50° south lati-
tude. In fact, due to symmetry, if a satellite passes over 50° north, it must pass as far 
south as 50°. Any orbit passes over the pole if, and only if, it has an inclina-
tion of 90°.

Period. With a nonrotating Earth, the ground track would be a circle passing over 
the same terrestrial points every orbit. Because the earth does rotate 15° per hour, 
by the time the satellite returns to the same place in its orbit after one revolution, the 
earth has rotated eastward by some amount. The ground track therefore looks like it 
has moved westward on the earth’s surface (westward regression). The amount of 
regression is proportional to the time it takes for one orbit (i.e., the period). The orienta-
tion of the satellite’s orbital plane does not change in space; the earth has just 
rotated beneath it.

The example in figure 6-23 shows a satellite in a circular orbit with a period of 90 
minutes and an inclination of approximately 50°. With a 90-minute period, the satel-
lite’s ground trace regresses 22.5° westward per revolution (15°/hour × 1.5 hours = 
22.5°) around the earth. This figure shows three successive orbits around the earth.

Eccentricity. The above example shows a circular orbit (e ≈ 0), which produces si-
nusoidal ground tracks. Eccentricity affects the ground track because the satellite 
spends different amounts of time in different parts of its orbit (it is moving faster or 
slower). This means it will spend more time over certain parts of the earth than others. 
This has the effect of creating an unsymmetrical ground track. 

Argument of Perigee. The argument of perigee skews the ground track. For a pro-
grade orbit, at perigee the satellite will be moving faster eastward than at apogee, in 
effect tilting the ground track. A great example of this type of effect on a ground track 
can be seen in figure 6-6, which shows the track of a Molniya orbit.

Launch Considerations

 When a satellite is launched, it is targeted for a specific orbit. Several factors must 
be taken into consideration such as launch window, launch azimuth, desired orbital 

Figure 6-23. Earth’s rotation effects. (Adapted from Air University, Space Primer, unpublished book, 2003, 8-16.)
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inclination, desired orbital altitude, and launch booster type. These factors are ad-
dressed in two general categories: launch location and launch velocity. The final and 
probably most important consideration is the launch cost.

Launch Location. The location of the launch site is extremely important because it 
usually determines the range of possible orbital inclinations in which to insert a satel-
lite. Most satellites launched into orbit are considered direct launch satellites. Note 
that a direct launch from a latitude of 28° will by definition have an inclination of at 
least 28° since the orbital plane must pass through the launch site and the center of 
the earth. Lower inclinations will require an on-orbit plane change or maneuver, which 
has significant fuel penalties. 

 A launch window is defined as the period of time during which a satellite can be 
launched directly into a specific orbital plane from a specific launch site.47 If the orbital 
plane inclination is greater than the launch site latitude, the launch site will pass 
through the orbital plane twice a day, producing two launch windows per day. The di-
rection to point is known as the launch azimuth, measured from the north clockwise.

If the inclination of the orbital plane is equal to the launch site latitude, the launch 
site will be coincident with the orbital plane once a day, producing one launch window 
per day at a launch azimuth of 90º (due east). If the inclination is less than the launch 
site latitude, the launch site will not pass through, or be coincident with, the orbital 
plane at any time, so there will not be any launch windows for a direct launch.48 

A simplified model for determining inclination (i) from launch site latitude (L) and 
launch azimuth (Az) is:

The launch azimuths allowed (in most countries) are limited due to the safety con-
siderations that prohibit launching over populated areas or foreign airspace. This re-
striction further limits the possible inclinations from any launch site.49 

Launch Velocity. When a satellite is launched, a tremendous amount of energy is 
imparted to it. Such forces are necessary to overcome the gravitational force of the earth 
as discussed previously. To maintain a minimum circular orbit at an altitude of 90–100 
miles, the satellite has to travel at about 17,500 mph. Due to the earth’s rotation, more 
or less kinetic energy may need to be supplied, depending on launch azimuth. The 
starting velocity at the launch site varies with latitude and can be determined by mul-
tiplying the cosine of the latitude by 1,037 mph. For example, at an altitude of 45° north 
latitude, the starting velocity would be determined in the following manner: 

A satellite launched from the equator in the same direction as the earth’s rotation 
(due east) has an initial speed of 1,037 mph. Therefore,16,463 mph must be supplied 
(17,500 mph – 1,037 mph = 16,463 mph) to launch a satellite into that particular orbit 

cos(i) = cos(L) • sin(Az)

cos(45) x 1,037 mph = 0.7071068 x 1,037 mph = 733.3 mph
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(90–100 mile altitude). If launched from the equator in a retrograde orbit (against the 
rotation of the earth), 18,537 mph must be supplied. Launching with the earth’s rota-
tion saves energy and allows for larger payloads for any given booster. In addition, the 
above equations show substantial energy savings when locating launch sites close to 
the equator. 

Launch Costs. Launching a satellite into space is an extremely expensive venture. 
A very common standard used to estimate the cost of putting a satellite in orbit has 
been $10,000 per pound. In reality, the cost per pound varies greatly. Factors such as 
the type of launch payload, the launch booster, and orbit type (LEO, GEO, etc.) affect 
the costs. In one study of the current commercial launch costs, it was determined that 
the average cost per pound was between $3,632 and $4,587 for LEO launches and 
between $9,243 and $11,243 for GEO launches.50 The actual launch costs used to de-
termine these averages ranged from $5 million for a Russian Strategic Arms Reduction 
Treaty (START) launch vehicle (LEO) on the lower end to $180 million for a European 
Space Agency Ariane 5 launch vehicle (GEO) on the higher end.51 

Orbital Maneuvers

An orbital maneuver is a deliberate change in the size, shape, and/or orientation of 
a satellite’s orbit. The reasons for conducting an orbital maneuver include (but are not 
limited to) the following: increasing the satellite’s field of view, counteracting the effects 
of atmospheric drag or other perturbations, increasing imaging resolution, rendez-
vousing with another satellite, or deorbiting a satellite.52 Perturbations and deorbits 
will be discussed further in later sections.

Delta-v. As previously mentioned, a satellite’s velocity and position determine its 
orbit. To change one of these requires the application of force, which then accelerates 
the vehicle by Newton’s second law. This acceleration produces an impulsive change in 
velocity, known as delta-v (∆v), which changes the size of the orbit by either adding or 
subtracting energy.53 For any single ∆v orbital change, the desired orbit must intersect 
the current orbit, and the point of intersection is where the change is applied. Other-
wise it will take at least two ∆v’s to achieve the final orbit, one to leave the current orbit 
and another to join the final desired orbit. The amount of ∆v required can be deter-
mined by subtracting the present vector from the desired vector. 

Mission Considerations. Mission planners must ensure that a satellite is provided 
with sufficient fuel to perform the above maneuvers once in orbit. Additional fuel on 
board a satellite results in a heavier payload and may require a more powerful booster 
to place the satellite in orbit, so these maneuvers must be planned carefully. There are 
two types of orbital maneuvers: in plane and out of plane. 

In-plane maneuvers are the most common type of orbital maneuvers performed 
since they require much less fuel and energy to perform. These maneuvers are con-
ducted to change a satellite’s period (size), argument of perigee, or true anomaly.54 The 
majority of in-plane maneuvers are performed to counter the external forces, or pertur-
bations, that are constantly acting upon the satellite and changing its orbit.

Out-of-plane maneuvers result in a change in inclination or right ascension of the 
ascending node.55 This type of maneuver requires a much larger amount of fuel to gen-
erate the sufficient velocity vectors (∆v) to change the satellite’s orbital plane. For ex-
ample, a 28º plane change, such as would be necessary for a Kennedy Space Center–
launched satellite to become equatorial, requires a ∆v of about 3.5 km/s. This same ∆v 
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applied in-plane would be enough for the two burns needed to raise an LEO satellite to 
geostationary.

Perturbations

Some orbit maneuvers are done simply to maintain the given orbit in the light of 
perturbations, which were ignored earlier in our discussion to simplify the orbital ele-
ments. However, in the real world, all satellites are subject to external forces acting 
upon a satellite that affect its otherwise constant orbital parameters. These forces have 
a variety of causes, origins, and effects. For instance, because of drag, the eccentricity 
of a satellite orbiting the earth can never truly equal zero. These forces are named and 
categorized in an attempt to model their effects. The major perturbations are:

•  Earth’s oblateness

•  Atmospheric drag

•  Third-body effects

•  Solar wind/radiation pressure

•  Electromagnetic drag

Earth’s Oblateness. The earth is not a perfect sphere. It is somewhat asymmetrical 
at the poles and bulges at the equator. This squashed shape is referred to as oblateness, 
or the J2 effect. The north polar region is more pointed than the flatter south polar re-
gion, producing a slight “pear” shape. Also, the equator is not a perfect circle; it is slightly 
elliptical when looking down on it from the top. The effects of the earth’s oblateness are 
gravitational variations or perturbations, which have a greater influence the closer a 
satellite is to the earth. For low to medium orbits, these influences are significant.56 

One effect of the earth’s oblateness is nodal regression. Westward regression due to 
the earth’s rotation under the satellite was discussed above in the section on ground 
tracks. Nodal regression is an actual rotation of the orbital plane about the earth (the 
right ascension changes) relative to the fixed reference line—the first point of Aries. If 
the orbit is prograde, the orbital plane rotates westward around the earth (right ascen-
sion decreases); if the orbit is retrograde, the orbital plane rotates eastward around the 
earth (right ascension increases). 

In most cases, perturbations must be counteracted. However, in the case of sun-
synchronous orbits, perturbations can be advantageous. Picking a specific slightly 
retrograde orbit, the angle between the orbital plane and a line between the earth and 
the sun remains constant and thus “sun-synchronous.” This works because as the 
earth orbits eastward around the sun, the orbital plane drifts due to the J2 effect 
around the earth at the same rate.

A sun-synchronous orbit is beneficial because it allows a satellite to view the same 
place on Earth with the same sun angle (or shadow pattern) every day. This is very 
valuable for remote sensing missions because they use shadows to measure object 
height. With a constant sun angle, the shadow lengths give away any changes in height, 
or any shadow changes give clues to exterior configuration changes.57

Another significant effect of Earth’s asymmetry is apsidal line rotation. This effect ap-
pears as a rotation of the orbit within the orbital plane, that is, the argument of perigee 
changes. This is true for all orbits except at an inclination of 63.4° (and its retrograde 
complement, 116.6°), where this rotation happens to be zero. The Molniya orbit was spe-
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cifically designed with an inclination of 63.4° to take advantage of this perturbation. With 
the zero effect at a 63.4° inclination, the stability of the Molniya orbit improves, limiting 
the need for considerable onboard fuel to counteract this rotation. Without this effect, 
the apogee point would rotate away from the desired communications zone (i.e., from the 
Northern to Southern Hemisphere), and the satellite would be useless.58 

The ellipticity of the equator has an effect that shows up most notably in geostation-
ary satellites (also in inclined geosynchronous satellites). Because the equator is ellip-
tical, most satellites are closer to one of the lobes and experience a slight gravitational 
misalignment. This misalignment affects geostationary satellites more because they 
view the same part of the earth’s surface all the time, resulting in a cumulative effect. 
The elliptical force causes the subpoint of the geostationary satellite to move east or 
west with the direction depending on its location. There are two stable points at 75º 
east and 105º west and two unstable stable points 90° out (165º east and 5º west). This 
movement would be bad not only because the satellite would no longer “hover” over the 
point of interest, but also because it would cause collisions if all the GEO satellites 
drifted to these two nodes.

Atmospheric Drag. The earth’s atmosphere does not suddenly cease; rather it trails 
off into space. The current atmospheric model is not perfect because of the many factors 
affecting the upper atmosphere, such as the earth’s day-night cycle, seasonal tilt, vari-
able solar distance, fluctuation in the earth’s magnetic field, the sun’s 27-day rotation, 
and the 11-year sun spot cycle. Even a very thin atmosphere causes a drag force due to 
the high orbital speeds of the satellites. The drag force also depends on the satellite’s 
coefficient of drag and frontal area, which varies widely between satellites.59 Up to 1,000 
km (620 miles), the slowing effect it has on satellites must be taken into account. 

The uncertainty in these variables causes predictions of satellite decay to be accu-
rate only for the short term. An example of changing atmospheric conditions causing 
premature satellite decay occurred in 1978–79, when the atmosphere received an in-
creased amount of energy during a period of extreme solar activity. The extra solar 
energy expanded the atmosphere, causing several satellites to decay prematurely, most 
notably the US space station Skylab.60

The highest drag occurs when the satellite is closest to the earth (at perigee) and 
has an effect similar to performing a retro-rocket delta-v at perigee; it decreases the 
apogee height, circularizing the orbit. On every perigee pass, the satellite loses more 
kinetic energy (negative delta-v), circularizing the orbit more and more until the whole 
orbit is experiencing significant drag and the satellite spirals in, enters the earth’s 
atmosphere, and falls back to the earth.61 For example, the International Space Sta-
tion currently drops in altitude 30 km per month and thus requires a reboost at every 
shuttle rendezvous.

Third-Body Effects. According to Newton’s Law of Universal Gravitation, every ob-
ject in the universe attracts every other object in the universe. The greatest third-body 
effects come from those bodies that are very massive and/or close, such as the sun, 
Jupiter, and the moon. These forces affect satellites in orbit as well. The farther a satel-
lite is from the earth, the greater the third-body forces are in proportion to Earth’s 
gravitational force, and therefore, the greater the effect on the high-altitude orbits.62

Radiation Pressure. The sun is constantly expelling atomic matter (electrons, pro-
tons, and Helium nuclei). This ionized gas moves with high velocity through interplan-
etary space and is known as the solar wind. Satellites are like sails in this solar wind, 
alternately being speeded up and slowed down, producing orbital perturbations.63
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Electromagnetic Drag. Satellites are continually traveling through the earth’s mag-
netic field. With all their electronics, satellites produce their own localized magnetic 
fields which interact with the earth’s, causing torque on the satellite. This torque 
mainly turns the satellite within its orbit rather than affecting the orbit itself as the 
other perturbations do. 

Deorbit and Decay

So far the concern has been with placing and maintaining satellites in orbit. Low 
Earth orbit satellites have an expected mission duration (life expectancy). Once a pay-
load has completed its mission, it is essentially “taking up space” in space. In addition, 
when a payload is launched into orbit, other pieces from that launch such as the rocket 
body, platform, or debris may also remain in orbit. Due to the effects of perturbations, 
most of these objects will eventually reenter the earth’s atmosphere. The only questions 
are when and how. The answers can be determined by mission planners, who are re-
sponsible for deciding whether to deorbit an object or allow it to naturally decay.

A deorbit is the deliberate, controlled reentry of an object into the earth’s atmo-
sphere to a specific location.64 This is usually done to recover something of value, such 
as people in the case of the space shuttle returning from the International Space Sta-
tion. It is also done to protect civilians by controlling the reentry of large objects that 
may survive reentry through the earth’s atmosphere as was the case with the deorbit 
of the Russian Mir space station in March 2001.65 Most LEO objects are not payloads 
but rather space junk and therefore cannot be controlled by satellite operators for a 
possible deorbit. These objects are left to decay naturally back to the earth. 

A decay is the uncontrolled reentry of an object into the earth’s atmosphere. The ef-
fects of perturbations, most notably atmospheric drag, will eventually reduce a satel-
lite’s orbital altitude to the point where it can no longer remain in orbit. As discussed 
in a previous section, this altitude is approximately 150 km (93 miles). It is possible for 
these decaying objects to be detected through the Space Surveillance Network, dis-
cussed in chapter 19. In addition, predictions for reentry dates and locations for decay-
ing objects can be determined by USSTRATCOM’s Joint Space Operations Center, as 
discussed in chapter 12.

In some situations, the satellites are in such stable orbits that natural perturba-
tions will not do the disposal job. In these instances, the satellite must be removed 
from its operational orbit to another location. To return a satellite to Earth without 
destroying it takes a considerable amount of energy. Obviously, it is impractical to 
return old satellites to Earth from a high Earth orbit. The satellite is usually boosted 
into a slightly higher orbit to get it out of the way, and there it will remain for thou-
sands of years. This practice is common for geosynchronous satellites. By boosting 
the orbit even higher (> 22,236 miles) above the earth, the satellite is placed in what 
is called a supersynchronous orbit.66 
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